
Preparing NERSC science applications for Cori

NERSC Exascale Science Application Program (NESAP)

NWChem: Computational Chemistry Codes
Developed by Center for Computational Sciences and Engineering at LBNL

NESAP PI: Ann Almgren (LBNL) NERSC Postdoc: Brian Friesen

BoxLib: Block-structured AMR Framework

Developed at LBNL/UCB. Used as “prototype” for App Readiness at NERSC.
NESAP PI: Jack Deslippe (NERSC)

BerkeleyGW: Materials Science Applications EMGeo: Geophysical Imaging Applications

CESM: Community Earth System Model
NESAP PI: John Dennis (NCAR). NERSC Liaison: Helen He

Application Readiness for NERSC Cori

1) National Energy Scientific Computing Center at Lawrence Berkeley National Laboratory
2) Lawrence Berkeley National Laboratory

Zhengji Zhao1, Scott French1, Jack Deslippe1, Mathias Jacquelin2, Brian Friesen1, and Helen He1

EMGeo (EM imaging and Seismic imaging)
dominated by Krylov solver (> 90% of wallclock)
•  Different solver methods (QMR vs. IDR), but similar motifs

Fig. 1: Preliminary thread scaling on KNC (NERSC Babbage)

Developed by researchers at LBL Earth Science Division

Estimating impact of HBM

Ti
m

e
to

 s
ol

ut
io

n
(s

) Low
er is better

Fig. 3 (Right): Estimating the impact of
allocation in “fast” and “slow” memory using a
recent two-socket Haswell system.

•  Designed for numerical solution of PDEs on distributed, structured grids
•  Hybrid MPI+OpenMP parallelism

Traditional threading model

•  Domain decomposed into N boxes, distributed among M MPI tasks, each with m threads
•  Each thread operates on ~(N / (M*m)) boxes
•  Leads to load imbalance with large #s of threads (>20), esp. in AMR where box distribution among MPI tasks

is uneven

Tiling threading model

•  Iteration space within each box is divided into
smaller “tiles,” which are distributed among
threads

•  Tile size specified by user; contiguous in unit-
stride dimension for optimal caching

•  Tile-level threading reduces “surface area-to-
volume” ratio of memory halo to FP data for
distributed workloads

Preliminary performance results

•  Tiling implementation strong scales efficiently up to
~120 threads on Babbage (KNC testbed at NERSC)

•  Saturates memory bandwidth at ~2 HW threads/core
•  Strong scales more efficiently than non-tiled version

up to memory BW saturation point
•  Even with only 1 thread, performance with tiling is

still faster due to improved data locality within tiled
loop iteration space

Project PI: Gregory Newman (ESD); NESAP Liaison: Scott French (NERSC) NERSC’s next supercomputer, Cori, will begin to
transition our workload to more energy efficient
architectures

•  Cray XC system with over 9300 Intel Knights Landing
compute nodes

•  Focus: increased on-node parallelism (72cores/node);
Larger vector units (512 bits)

•  On-package high-bandwidth memory

NERSC Exascale Science Application Program

•  20 application code teams were selected to work with Cray,
Intel and NERSC staff (August, 2014)

•  Resources available to application teams: Access to
vendor resources and staff including “dungeon sessions”
with Intel and Cray Center of Excellence, early access to
KNL “whitebox” systems, early access and time on Cori

•  Funding available for 8 NESAP Post-doctoral Fellows to
work directly with application teams

•  Many KNL-focused optimization strategies have been
explored, and here we will highlight our efforts and
achievements with a few selected NESAP codes

Above: Breakdown of the NERSC workload (2013 MPP
hours), highlighting the NESAP codes and code proxies

Additional NESAP readiness and
support efforts
•  NERSC hosts and/or organizes various training

events for users and developers, e.g., OpenMP,
Vectorization, MPI-3, Intel and Cray profiling and
optimization tools, Intel and Cray compiler
optimizations

•  Hosting code optimizations hackathons for
NERSC users and application developers

•  Intensive participation in the Intel Xeon Phi User
Group (IXPUG)

•  Involved in the OpenMP committee System named after Gerty Cori, Biochemist and the first
American woman to receive the Nobel prize in science.

Refactor to have 3 Loop Structure:
Add
OpenMP

Ensure
Vectorization

Optimization steps:
1. Target more on-node parallelism. (MPI model already failing users)
2. Ensure key loops/kernels can be vectorized.

ncouls typically in
1000s - 10,000s. Good
for vectorization.

Attempt to save work
breaks vectorization and
makes code slower.

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown
 ...
 do iw=1,3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt.
TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff
 ...
 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
 scht = scht + scha(ig)

 enddo ! loop over g
 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Outer: MPI
Middle: OpenMP
Inner: Vectorization

Significant Bottleneck is large matrix
reduction like operations.

Project PI: Wibe De Jong (LBNL), and Eric Bylasca (PNNL) NERSC Liaison: Zhengji Zhao

Original inner
loop. Too small to
vectorize!

ngpown typically in
100’s to 1000s. Good
for many threads.

September 28 - October 2, 2015
Berkeley, CA Cori P1 has arrived!

Acknowledgements

Intel, Inc., NESAP partnership
Cray, Inc., Collaboration via
Center of Excellence

Fig. 1: Box 1 is at level 0, Box2 and 3 are at level 1, and Box 4 and 5 are at level 2. A
number of boxes are assigned to a NUMA node, then each box is subdivide into tiles
by TiDA.

Sigma Summation Optimization Process

Plane wave Lagrange multiplier

•  Many matrix multiplication of complex numbers
•  Smaller matrix products

-  Typical ne = 100, ngrid = 10,000

•  Threading only with MKL not satisfactory
-  FFM does not scale with threads

Product Type Size Flops

FFM Inner Ne x Ng x Ne 200 MFlop

MMM Square Ne x Ne x Ne 2 MFlop

FMF Tall-skinny Ng x Ne x Ne 200 MFlop

FFM

FMF

•  “Reduce” algorithm
-  Distribute work on A and B

along the k dimension
-  A thread puts its contribution

in a buffer of size m x n
-  Buffers reduced to produce C
-  OMP teams of threads

•  Better for smaller inner dimensions, i.e. for FFMs

T1 T3 T2 T1
T2

T3

T3

T2

T1

CPU 18 1

Threads 1 18

Total Lagrange Multiplier 5.7 ms 9.5 ms

FFM 4.3 ms 8.7 ms

FMF 0.5 ms 0.6 ms
MKL

1 MPI – 240 threads Best Reduce
10 MPI – 6 teams of 4 threads

Xeon E7-8890v3 (Haswell,18 cores)

•  Multiple FFMs can be
done in concurrently in
different thread pools

Coupled cluster Triples algorithm

•  Double terms usually dominate in (T) term
•  Other terms become new performance

bottleneck on many-core architectures -
Amdahl’s Law

•  Optimizations lead to significant performance improvements
-  Threading enables us to use all 240 hardware threads
-  Optimized code performs 2.5X better than baseline
-  Up to 65X better compared to 1 MPI rank

Fig 2: Time to solution / thread scaling to assess the impact of
KNL focused optimizations on other architectures, also Haswell.

Low
er is better Ti

m
e

to
 s

ol
ut

io
n

(s
)

Impact of KNL optimizations (Haswell)

Original

Winner

~ 8% faster than original

Low
er is better H

ig
he

r i
s

be
tte

r

Thread scaling on Knights Corner

Sample Code Dependencies and Vectorization
Prototype from Dungeon Session

Optimization Steps
Version 1
•  Simplify expressions to minimize #operations
•  Use internal GAMMA function
Version 2
•  Remove “elemental” attribute, move loop inside.
•  Inline subroutines. Divide, fuse, exchange loops.
•  Replace assumed shaped arrays with loops
•  Replace division with inversion of multiplication
•  Remove initialization of loops to be overwritten later
•  Use more aggressive compiler flags
•  Use profile-guided optimization (PGO)
 Version 3 (Intel compiler only)
•  Use !$OMP SIMD ALIGNED to force vectorization

MG2: CESM kernel for radiation transfer
workload
•  Typically takes 10% of CESM time
•  Compute bound
•  Very little vectorization: pipeline dependencies,

heavy use of math intrinsics

Summary
•  Directives and flags are helpful. Not a replacement for code modifications.
•  Break up loops and push loops into functions where vectorization can be

dealt with directly. Try different compilers.
•  Incremental improvements not necessary a BIG win from any one thing.

Accumulative results matter.
•  Performance and portability: use !$OMP SIMD is beneficial but very hard

to use: need to provide the aligned list manually.
•  Requested optional alignment declaration in Fortran language standard.

Before:

elemental function wv_sat_svp_to_qsat(es, p)
result(qs)

if ((p-es) <= 0._r8) then
 qs = 1.0_r8
 else
 qs = epsilo*es / (p - omeps*es)
 end if

end function wv_sat_svp_to_qsat

After:

function wv_sat_svp_to_qsat(es, p, mgncol)
result(qs)

integer,intent(in) :: mgncol
integer :: i

 do i=1,mgncol
 if ((p(i)-es(i)) <= 0._r8) then
 qs(i) = 1.0_r8
 else
 qs(i) = epsilo*es(i)/(p(i) -
omeps*es(i))
 end if
 enddo

end function wv_sat_svp_to_qsat

OMP SIMD with Intel Compiler

0

200

400

600

800

1000

1200

Original version 1 version 2 version 3

Ti
m

e
pe

r i
te

ra
tio

n
(u

se
c)

SandyBridge/Intel

IvyBrdige/Intel

IvyBrdige/CCE

Optimization Steps:

•  Adding OpenMP to solvers (starting with IDR)
-  Overall thread scaling is good on Knights Corner Xeon Phi

(Fig. 1)
•  Understanding memory bandwidth saturation
-  Solvers dominated by SpMV, STREAM-like triads, etc.

•  Focusing initial architectural optimization experiments
on complex*16 ELLPACK SpMV
-  Many potential optimizations techniques for KNL
-  Alignment tweaks; Loop reordering, unrolling; Memory layout

optimizations; Fortran “SIMD-ization”
•  Developed SpMV kernel variants
 that span the space of likely
 optimizations (Fig. 2)
-  Ready for profiling when we have
 KNL access

•  Identify the candidate for HBM
-  Using NUMA affinity to simulate
 HBM on a dual socket system

